EXERCISE SHEET 2

1) Let X be a complex manifold. Consider the multiplication map

$$
\cup: \Lambda(n)_{\mathcal{D}} \otimes \Lambda(m)_{\mathcal{D}} \rightarrow \Lambda(n+m)_{\mathcal{D}}
$$

Let d denote the differential of the complex $\Lambda(n+m)_{\mathcal{D}}$. For $x \in \Lambda(n)_{\mathcal{D}}$ and $y \in \Lambda(m)_{\mathcal{D}}$, show that

$$
d(x \cup y)=d x \cup y+(-1)^{\operatorname{deg}(x)} x \cup d y
$$

2) Let $C^{\bullet}=\left(C^{\bullet}, d\right)$ be a complex of sheaves on a topological space X. Here is another way of looking at hypercohomology: Let $\mathscr{U}=\left\{U_{i}\right\}_{i \in I}$ be an open cover of X and consider the Čech double complex $\left(\check{C}^{\bullet}\left(\mathscr{U}, C^{\bullet}\right), d, \delta\right)$. That is, a the double complex whose i-th column is the standard Čech complexes $\left.\check{C} \bullet\left(\mathscr{U}, C^{i}\right), \delta\right)$ of the sheaf C^{i}, and whose horizontal differentials are given by d. Form the total complex of $\left(\check{C}^{\bullet}\left(\mathscr{U}, C^{\bullet}\right), d, \delta\right)$, i.e. the complex given by Tot ${ }^{\bullet}$ whose n-th term is $\operatorname{Tot}^{n}=\bigoplus_{i+j=n} \check{C}^{i}\left(\mathscr{U}, C^{j}\right)$ and whose differential $\operatorname{Tot}^{n} \rightarrow \operatorname{Tot}^{n+1}$ is $\delta+(-1)^{n} d$. Suppose that the covering \mathscr{U} is "good", in the sense that

$$
H^{k}\left(U_{i_{1}} \cap \cdots \cap U_{i_{r}}, C^{i}\right)=0
$$

for all $k, r=1,2, \ldots$ and $i=0,1, \ldots$ Then

$$
\mathbb{H}^{*}\left(X, C^{\bullet}\right) \cong H^{*}\left(\operatorname{Tot}^{\bullet}\right)
$$

(For example, suppose X is a smooth projective variety of dimension n and we are considering a complex of quasi-coherent sheaves C^{\bullet} on X. One can always find a cover by $n+1$ affine open subsets, and this cover is good because quasi-coherent sheaves are acyclic on affines.)
(a) Let X be a smooth projective variety over \mathbb{C}. Describe classes in $H_{\mathcal{D}}^{1}(X, \mathbb{Z}(1))$ using the above Čech description of hypercohomology.
(b) Describe the isomorphism $H_{\mathcal{D}}^{1}(X, \mathbb{Z}(1)) \cong H^{0}\left(X, \mathcal{O}_{X}^{*}\right)$ using part (a).
(c) Let X be a smooth projective variety over \mathbb{C}. Describe classes in $H_{\mathcal{D}}^{2}(X, \mathbb{Z}(2))$ using the above Cech description of hypercohomology.
(d) Describe the isomorphism $H_{\mathcal{D}}^{2}(X, \mathbb{Z}(2)) \cong \mathbb{H}^{1}\left(X, \mathcal{O}_{X}^{*} \xrightarrow{d \log } \Omega_{X}^{1}\right)$ using part (c).
3) Let X be a complex manifold. Show that the group $\mathbb{H}^{1}\left(X, \mathcal{O}_{X}^{*} \xrightarrow{d \log } \Omega_{X}^{1}\right)$ (which we know is isomorphic to $H_{\mathcal{D}}^{2}(X, \mathbb{Z}(2))$) can be identified with the group of isomorphism classes of (holomorphic) line bundles \mathscr{L} on X with a (holomorphic) connection $\nabla: \mathscr{L} \rightarrow \mathscr{L} \otimes_{\mathcal{O}_{X}} \Omega_{X}^{1}$. (Recall that this means that ∇ is a \mathbb{C}-linear map satisfying the Leibniz rule: $\nabla(f s)=f \nabla(s)+s \otimes d f$ for local sections f of \mathscr{L} and s of \mathcal{O}_{X}.)
4) Under the isomorphisms given in Lecture 2 (and also in the previous questions), the product map

$$
\cup: H_{\mathcal{D}}^{1}(X, \mathbb{Z}(1)) \times H_{\mathcal{D}}^{1}(X, \mathbb{Z}(1)) \rightarrow H_{\mathcal{D}}^{1}(X, \mathbb{Z}(2))
$$

becomes a map

$$
r(-,-): H^{0}\left(X, \mathcal{O}_{X}^{*}\right) \times H^{0}\left(X, \mathcal{O}_{X}^{*}\right) \rightarrow \mathbb{H}^{1}\left(X, \mathcal{O}_{X}^{*} \xrightarrow{d \log } \Omega_{X}^{1}\right)
$$

Let $f \in H^{0}\left(X, \mathcal{O}_{X}^{*}\right)$ such that $1-f \in H^{0}\left(X, \mathcal{O}_{X}^{*}\right)$. Show that the line bundle with connection $r(f, 1-f)$ is trivial, i.e. $r(f, 1-f) \cong\left(\mathcal{O}_{X}, d\right)$.

