EXERCISE SHEET 2

1) Let X be a complex manifold. Consider the multiplication map

$$\cup : \Lambda(n)_{\mathcal{D}} \otimes \Lambda(m)_{\mathcal{D}} \to \Lambda(n+m)_{\mathcal{D}}$$

Let d denote the differential of the complex $\Lambda(n+m)_{\mathcal{D}}$. For $x \in \Lambda(n)_{\mathcal{D}}$ and $y \in \Lambda(m)_{\mathcal{D}}$, show that

$$d(x \cup y) = dx \cup y + (-1)^{\deg(x)} x \cup dy.$$

2) Let $C^{\bullet} = (C^{\bullet}, d)$ be a complex of sheaves on a topological space X. Here is another way of looking at hypercohomology: Let $\mathscr{U} = \{U_i\}_{i \in I}$ be an open cover of X and consider the Čech double complex $(\check{C}^{\bullet}(\mathscr{U}, C^{\bullet}), d, \delta)$. That is, a the double complex whose *i*-th column is the standard Čech complexes $\check{C}^{\bullet}(\mathscr{U}, C^{i}), \delta$) of the sheaf C^i , and whose horizontal differentials are given by d. Form the total complex of $(\check{C}^{\bullet}(\mathscr{U}, C^{\bullet}), d, \delta)$, i.e. the complex given by Tot[•] whose *n*-th term is $\operatorname{Tot}^n = \bigoplus_{i+j=n} \check{C}^i(\mathscr{U}, C^j)$ and whose differential $\operatorname{Tot}^n \to \operatorname{Tot}^{n+1}$ is $\delta + (-1)^n d$. Suppose that the covering \mathscr{U} is "good", in the sense that

$$H^{k}(U_{i_{1}} \cap \dots \cap U_{i_{r}}, C^{i}) = 0$$

for all $k, r = 1, 2, \dots$ and $i = 0, 1, \dots$ Then
 $\mathbb{H}^{*}(X, C^{\bullet}) \cong H^{*}(\mathrm{Tot}^{\bullet}).$

(For example, suppose X is a smooth projective variety of dimension n and we are considering a complex of quasi-coherent sheaves C^{\bullet} on X. One can always find a cover by n + 1 affine open subsets, and this cover is good because quasi-coherent sheaves are acyclic on affines.)

- (a) Let X be a smooth projective variety over \mathbb{C} . Describe classes in $H^1_{\mathcal{D}}(X,\mathbb{Z}(1))$ using the above Čech description of hypercohomology.
- (b) Describe the isomorphism $H^1_{\mathcal{D}}(X,\mathbb{Z}(1)) \cong H^0(X,\mathcal{O}^*_X)$ using part (a).
- (c) Let X be a smooth projective variety over \mathbb{C} . Describe classes in $H^2_{\mathcal{D}}(X,\mathbb{Z}(2))$ using the above Čech description of hypercohomology.
- (d) Describe the isomorphism $H^2_{\mathcal{D}}(X, \mathbb{Z}(2)) \cong \mathbb{H}^1(X, \mathcal{O}^*_X \xrightarrow{d \log} \Omega^1_X)$ using part (c).
- 3) Let X be a complex manifold. Show that the group $\mathbb{H}^1(X, \mathcal{O}_X^* \xrightarrow{\mathrm{dlog}} \Omega_X^1)$ (which we know is isomorphic to $H^2_{\mathcal{D}}(X, \mathbb{Z}(2))$) can be identified with the group of isomorphism classes of (holomorphic) line bundles \mathscr{L} on X with a (holomorphic) connection $\nabla : \mathscr{L} \to \mathscr{L} \otimes_{\mathcal{O}_X} \Omega_X^1$. (Recall that this means that ∇ is a \mathbb{C} -linear map satisfying the Leibniz rule: $\nabla(fs) = f\nabla(s) + s \otimes df$ for local sections f of \mathscr{L} and s of \mathcal{O}_X .)

4) Under the isomorphisms given in Lecture 2 (and also in the previous questions), the product map

$$\cup: H^1_{\mathcal{D}}(X, \mathbb{Z}(1)) \times H^1_{\mathcal{D}}(X, \mathbb{Z}(1)) \to H^1_{\mathcal{D}}(X, \mathbb{Z}(2))$$

becomes a map

 $r(-,-): H^0(X, \mathcal{O}_X^*) \times H^0(X, \mathcal{O}_X^*) \to \mathbb{H}^1(X, \mathcal{O}_X^* \xrightarrow{d \log} \Omega_X^1).$

Let $f \in H^0(X, \mathcal{O}_X^*)$ such that $1 - f \in H^0(X, \mathcal{O}_X^*)$. Show that the line bundle with connection r(f, 1 - f) is trivial, i.e. $r(f, 1 - f) \cong (\mathcal{O}_X, d)$.

 $\mathbf{2}$